Chapter 14

Sound Judgments: Perception of Indexical Features in Children’s Speech

Paul Foulkes, University of York; Gerard Docherty and Ghada Khattab, Newcastle University; Malcah Yaeger-Dror, University of Arizona

1. Introduction

One of the defining features of human language is that it displays systematic variation at all levels of structure, from syntax to fine-grained features of pronunciation. Certain aspects of this variation result from biological differences across speakers. One example of biologically-constrained variation is the markedly different levels of fundamental frequency typical of men, women, and children, which result to a large extent from gross differences in laryngeal anatomy and physiology. Variation may also derive from learned patterns of behavior, acquired as a consequence of a speaker’s regional, social, linguistic, and cultural background. Regional accent is a clear case in point.

When we speak we therefore offer a wealth of information about ourselves through the linguistic and phonetic alternatives we use. Listeners can and do take notice of such alternatives. Several studies have investigated which variable cues listeners can identify, how they are identified, and what interpretations listeners make of them. It has been shown, for example, that cues related to speaker gender, or to individual talkers, can affect linguistic processing such as lexical identification or phoneme categorization (e.g., Johnson 1997, Strand 1999, Hawkins and Smith 2001). Sociolinguistic studies, meanwhile, have established that listeners evaluate variants (positively or negatively), linking them to aspects of personality such as intelligence and friendliness (e.g., Giles and Powesland 1975). Furthermore, listeners can identify, with varying degrees of accuracy, aspects of a talker’s social, ethnic and regional background (e.g., van Bezooijen and Gooskens 1999, Purnell, Idsardi, and Baugh 1999; see further Thomas 2002 for an excellent summary of speech perception work which bears on sociolinguistic issues).
In this chapter we describe an experiment in which listeners were asked to identify the sex of children from their speech. The study has two broad aims. First, it seeks to enhance our understanding of the range of cues used by listeners in performing the task of gender identification. Although a number of studies have addressed this issue previously (reviewed subsequently), results have been somewhat inconsistent and at times vague. Secondly, our specific interest is in the role played by fine-grained phonetic variants in listeners' responses. It is well known from sociolinguistic studies that segmental features may vary quantitatively within a community. A particular form may therefore be indexical of a social group. For instance, men might use statistically more of a particular variant than women do in the same type of interactional speech style. However, little work has been carried out to assess whether listeners show any awareness of such statistical associations between phonetic forms and social categories.

We begin with a brief review of previous work on identifying speaker sex, and of sex-correlated variation in speech. In Section 3 we then outline the dialect and sociolinguistic variables of interest for our study. Section 4 explains the experimental method we adopted, and the results are discussed in Section 5. The final section summarizes the findings and identifies opportunities for further work.

2. Listener identification of speaker sex—Previous studies and possible cues

We might expect that judging the sex of a speaker is relatively straightforward, at least for adult talkers engaged in everyday interaction. This perhaps explains why few studies have tested listeners' ability to distinguish the sex of adult male and female talkers. One of the few studies to include a formal identification test of speaker sex (as part of a larger project) reports a 100% success rate (Krauss, Freyberg, and Morsella 2002: 621).

For adults, as noted earlier, a particularly robust cue to speaker sex is provided by the fundamental frequency (f0) of the speaker's voice. Based on analysis largely of western European languages, the average f0 for male speakers is around 120 Hz while that for females is around 220 Hz (e.g., Fant 1956). Klatt and Klatt (1990) estimate that female f0 averages around 1.7 times that of males.

However, f0 is neither an infallible nor an invariant cue to speaker sex. First of all, there is considerable overlap in the f0 ranges used by adult males and females, such that a high pitched male voice may be mistaken for a low pitched female voice, or vice versa. For f0 in normal conversation Fant (1956) identifies the maximal male range as 50–250Hz, while that for women overlaps the male range at 120–480 Hz. Künzel (1987) presents data from 100 Germans which indicate that around 35% of males have an average f0 higher than the female baseline of 120 Hz. Moreover, f0 is subject to variation in response to many factors. Analysis of speech in contexts other than regular conversation shows, for example, that male f0 can be much higher under stress (Boss 1996), when a speaker attempts to counter ambient noise (e.g., Lane and Tranel 1971), and in telephone speech or when reading aloud (Hirson, French, and Howard 1995). It also appears that average male f0 may deviate markedly from the often-cited mean of 120 Hz when we consider different languages and non-standard dialects. French and Harrison (2005), for instance, report a mean of 105 Hz for 22 Caribbean males in Birmingham, UK, while the average for speakers of Urdu has been reported to be as high as 186 Hz (Peter French, personal communication).

Although f0 may be an obvious cue in many instances, it does not always provide unambiguous information about a speaker's sex. What is more, in the case of prepubescent, f0 may not be a helpful cue at all. The gross differences we can observe in f0 across males and females result from the physiological changes which occur in male voices at the onset of puberty (the "breaking" of the voice; Mackenzie Beck 1997). Males have a lower f0 because their vocal folds are larger and more massive, and thus they vibrate more slowly than those of females. With children there are no such major physiological differences (although there is some evidence that small physical differences in vocal tract anatomy emerge well before puberty, e.g., King 1952; Crelin 1973).

Nevertheless, there is abundant evidence that children's speech manifests phonetic differences which listeners can access to identify the sex of the talker. Several studies report response rates well above chance on sex identification tests (reviewed by Perry, Ohde, and Ashmead 2001). However, it is less clear which cue(s) are the most useful for listeners.

Given that f0 is such an important cue for adult talkers, it is understandable that several studies have assessed whether f0 differs for boys and girls, and also whether f0 is used by listeners to judge the sex of child talkers. For example, Günzburger et al. (1987) asked listeners to judge the sex of 17 children, and then recruited a group of blind listeners who rated the three best identified boys and three best identified girls on a number of perceptual scales. The clearest result from the latter part of the study was that the best identified girls were consistently rated as high pitched, while the boys were just as consistently given low pitch ratings. However, the consensus is that
average f0 plays at best only a secondary role in listeners' perceptions of sex for child talkers (Weinberg and Bennett 1971; Bennett and Weinberg 1979b; Perry et al. 2001). As expected, f0 has generally been found not to differ systematically or consistently between boys and girls in the way that it does for adults. Presumably it therefore cannot function as a robust cue for speaker sex. Weinberg and Bennett (1971), for instance, report no statistical differences between boys and girls aged 5 and 6, while Lee, Hewlett and Nairn (1995) found significant differences to emerge only from age 12. Perry et al. (2001) identified differences for 16-year-olds (and no differences for 4-, 8- or 12-year-olds), but their focus was on f0 of single vowels extracted from carrier phrases. Some studies in fact report girls to have lower f0 than boys matched for age (e.g., Sachs et al. 1973 for children aged 4 to 14, Günzburger et al. 1987 for Dutch-speaking children aged 7 and 8). By contrast, those studies that have found boys to have lower f0 than girls have usually been based on analysis of short and non-spontaneous materials such as sustained isolated vowels (e.g., Hasek, Singh, and Murry 1980 for ages 7 to 10), or small speaker samples (e.g., Sorenson 1989, reporting significant differences at ages 6, 8, 9 and 10, with three children of each sex per age category). Lieberman (1967) also describes findings from a small study, but his data are nonetheless noteworthy. A ten month old baby boy was recorded with a mean f0 of 390Hz when playing with his mother, but 340 Hz in a similar 20 minute play session with his father. A similar effect was found with a 13-month-old girl (average 390 Hz with the mother and 290 Hz with the father). The implication of these finding is that the children were adjusting their overall f0 level in relation to that of their interlocutor. However, it is clear that f0 does not play the same role in cueing the sex of child talkers as it does for adults.

In dismissing average f0 as an important cue, several studies have suggested that listeners can gain more reliable information from relative vowel formant frequencies and spacing. Perry et al. (2001) found systematic differences in formant values for four-year-olds, with boys giving lower first and second formant values than girls. Children therefore display the same patterns found to a more marked degree for adults. It remains unclear whether these effects are the product of emerging differences in vocal tract dimensions, whether boys and girls are imitating the differences that can be observed between adults, or both. Listeners do, however, seem inclined to attribute low F1 and F2 values to boys (Bennett and Weinberg 1979b, Perry et al. 2001).

Few other possible contributors to the identification of talker sex have been identified, and fewer still tested. Sachs et al. (1973: 81) suggest intonation and voice quality as possible cues, commenting also that boys in their study had a "more forceful, definite rhythm," although these parameters are not tested in their study. Günzburger, Bresser, ter Keurs (1987), however, offer some support that intonation patterns might affect listener response in sex identification tasks. Among the perceptual scales used by their blind listener group was "monotonous—melodious." The boys who were most successfully identified were given high "monotonous" ratings, while girls were given high "melodious" ratings. This suggests that a wide intonation range might be taken as an indicator of female speech. Production studies of adult talkers, however, fail to reveal a consistent pattern which would explain why listeners might make this inference. Syrdal's (1996) analysis of the 160 speaker Switchboard corpus, for instance, did find that women had a much wider f0 range than men, whereas Henton's (1989) review of earlier research suggested the opposite general trend. Henton's own study, based on a sample of ten Americans, yielded no significant differences for speaker sex. In comparing these studies it should also be borne in mind that Syrdal's data were collected from telephone calls. Telephone transmission introduces various acoustic and phonetic effects into the speech signal, both via the technical effects of passing the signal through a handset and telephone line, and also because speakers may behave differently when speaking on a telephone (e.g., Moye 1979; Summers et al. 1988; Byrne and Foulkes 2004).

Voice quality covers a wide array of phonetic cues (Laver 1980), only a small number of which have been addressed in production studies where speaker sex has been at issue. Phonatory differences have received the most attention. Breathy phonation has been identified regularly as a characteristic of female speech (e.g., Thorne et al. 1983; Henton and Bladon 1985; Klatt and Klatt 1990; Hillenbrand, Cleveland, and Erickson 1994), although there is often considerable variation within the male and female speaker groups tested. Creak has been attributed both to males (Henton and Bladon 1988 for British English speakers) and females (Syrdal 1996 for American English speakers), which might indicate regionally- or sociolinguistically-governed patterning. Stuart-Smith's (1999) detailed study of Glasgow speech identified both creaky phonation and nasalization as consistent features of male speech, while females were found to use phonation that is more whispy. In spite of such observations on voice quality, however, these do not appear to have been tested in either production or perceptual studies of children's speech.

The Günzburger et al. (1987) study suggested that overall amplitude or intensity of speech may be relevant in understanding listeners' responses to talker sex, with the blind listener group rating boys as "loud" and girls as "soft." Again, however, this seems not to have been the subject of formal testing in perceptual studies. Production studies do offer some support, though.
For example, Markel, Prebor, and Brandt (1972) found that adult males spoke, on average, with a greater intensity than females in interview tasks (the overall male average was 76.1 dB compared with that for females of 69.5 dB).

A final parameter for consideration is articulation rate. Bennett and Weinberg (1979a) considered rate as a possible factor in listeners' judgments, but found no differences in rate when they compared the speech of boys and girls and therefore concluded it would not be likely to affect listeners. A number of studies of adult speech production have also reported no differences in rate (Rylls et al. 1994, Syrdal 1996, Robb, Maclaglan, and Chen 2004). There is, however, some evidence for rate differences in other studies. Byrd (1994) analysed rate for 630 talkers in the TIMIT corpus, using two spoken sentences per subject. She found that men spoke on average 6.2% faster than women (the male mean was 4.69 syllables per second, compared with the female mean of 4.42). Yuan, Liberman, and Cieri (2006) also claim a small but significant effect, again with males speaking faster than females. Their findings are derived from analysis of several large corpora of telephone speech from English and Chinese speakers.

From this brief review of previous studies we can conclude that, while male and female talkers differ on a number of phonetic dimensions, the consistency and systematicity of these features is variable, and the evidence for their value in judgments of speaker sex is sketchy. Moreover, although a number of phonetic features have been addressed in perceptual studies, researchers have not previously assessed the role played by gender-correlated sociolinguistic variables. It is well known that gender patterning in sociolinguistic variable studies is extremely widespread (see the review by Chambers 2003). For example, males (at least in western societies) typically use higher proportions of non-standard variants than females of the same age, social background and community. What remains unclear is whether listeners can recognize the statistical associations between sociolinguistic variants and speaker sex in the way that has been shown for associations with ethnicity, social class, and region.

We move on now to describe the experiment we carried out to test listeners' perceptions of gender-correlated variables. This experiment was originally designed as a pilot study to probe listeners' ability to identify speaker sex from a range of phonetic cues: sociolinguistic variables were our main concern, but we also sought to test the effects of cues such as voice quality and rate, following the predictions made by other researchers which were reviewed previously. We chose to exploit the fact that we had access to a large number of recordings of speech from pre-school children, for whom no gross f0 differences would be expected. With respect to f0, then, we are assuming that children's voices are in principle androgynous, enabling us to test the contribution of other phonetic factors in listeners' perception of sex.

3. Dialect focus: Sex-correlated patterns in Tyneside voiceless stops

Tyneside is a large conurbation in the north-east of England, with the city of Newcastle upon Tyne as its hub. The dialectology and sociolinguistics of the region have been studied as extensively as any in the British Isles (e.g., Heslop 1892, Pellowe et al. 1972, Pellowe and Jones 1978, Local 1982, Jones-Sargent 1983, Jones 1985). The wide interest in Tyneside is undoubtedly a reflection both of the strong and distinctive cultural identity of the region, and also the singular character of its dialect. The Tyneside dialect, commonly referred to as Geordie, is in many respects very different from other non-standard varieties of British English in lexis, syntax, and both segmental and suprasegmental phonology and phonetics (see e.g., Watt and Milroy 1999, Local, Kelly, and Wells 1986, Beal 1993, 2004, and for example sound files www.ncl.ac.uk/necte/ and www.phon.ox.ac.uk/IViE/). The dialect is one that lay listeners find relatively easy to recognize, and its saliency is also testified by copious dialect literature (e.g., Dobson's popular lexicon and grammar Larn Yersel' Geordie, and several characters in the Newcastle-based adult comic Viz).

Two large empirical projects were executed in Tyneside in the 1990s, the first with adult subjects (Milroy, Milroy, and Docherty 1997) and the second with children and their mothers (Docherty et al. 2002). We draw on the findings and materials of both of these studies here. The adult study is henceforth referred to as the PVC project (an abbreviation of its full title, Phonological Variation and Change in Contemporary British English). The child study is abbreviated to ESV (The Emergence of Structured Variation in the Speech of Tyneside Infants). The fieldwork design and methods of data collection and analysis have been reported in detail elsewhere (for PVC see Docherty et al. 1997 and for ESV Foulkes et al. 2005), but Table 14.1 provides a summary of the main features of each project.

The work of the first two authors has focused on consonantal variation, with a particular interest in voiceless stops. Auditory and acoustic analysis of voiceless stops reveals rich, complex and often very subtle patterns of variation (see in particular Docherty et al. 1997, Docherty and Foulkes 1999, 2005, Foulkes et al. 2005, Foulkes and Docherty 2006). The plain oral stops [p t k], characteristic of standard English, are also found in Tyneside. However, /p t k/ in Tyneside English may be spirantized, pre-aspirated and/or voiced, while /t/...
can be also realized as a tap or [j]. Most distinctive of all is the range of highly localized variants involving laryngeal constriction. Intonsonorant /p t k/ (in water, winter) are generally realized with full or partial voicing and a period of creaky phonation either before or after the oral constriction. Wells (1982) transcribes these variants as [p̥ t̥ k̥] although we prefer [b̥ d̥ g̥] to reflect the fact that such tokens tend to be voiced. These local variants are very salient to the ears of outsiders, and are undoubtedly an example of a stereotype in the sense used by Labov (1994: 78). Glottal stops similar in form to those found in other dialects (i.e., fully voiceless and with a complete occlusion) are relatively rare. Docherty and Foulkes (1999, 2005) discuss subtle variation in production of glottal and glottalized forms in Tyneside English, but for the purposes of the present study we group together as a single category all types of variant which contain a laryngealized element.

Patterns of variant usage are constrained by a wide range of internal and external factors, including style (e.g., formality of speech), lexical identity (especially with respect to [i] for /l/; Wells 1982), social characteristics of the speaker and interlocutor, conversational function (e.g., in turn endings—see also Local et al. 1986) and prosody (e.g., articulation rate and phonological context, Docherty 2007).

We focus here on two patterns which were especially clear in previous analyses. Both relate to correlations between variant usage and gender. First, in word-medial intonsonorant contexts two main variants are found in the community: plain [p t k] and the local laryngealized variants. In free conversation the latter dominates for most speaker groups, while the plain variants are largely restricted to females (see Figure 14.1, which shows quantified data drawn from the PVC project). As expected for a stereotype variable, the laryngealized forms decrease in more formal styles, being instead replaced by the standard plain variants. For older females in particular the style shift is absolute; that is, local laryngealized variants are not used at all in formal speech styles. Thus, notwithstanding style, age, and class effects, we can observe that plain variants are statistically much more likely to occur in female speech.

In word-final pre-pausal context a different set of variants is found. Here laryngealized or glottal forms are very rare. Instead, plain [p t k] are the default forms for most speakers (a pattern which, incidentally, differentiates Tyneside from most other British accents, where glottal stops are usually frequent in this context). For young women, though, pre-aspirated [*pʰ tʰ kʰ] are emerging as a favored form. Our analysis of word-list data showed that 70% of tokens produced by young women were pre-aspirated (Docherty and Foulkes 1999). Pre-aspiration was considerably less frequent for younger males (35%). The overall rate of pre-aspiration was also much lower for older speakers in

<table>
<thead>
<tr>
<th>Table 14.1 Fieldwork Summary for Tyneside Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>speakers</td>
</tr>
<tr>
<td>age range</td>
</tr>
<tr>
<td>social class</td>
</tr>
<tr>
<td>sex</td>
</tr>
<tr>
<td>spoken materials</td>
</tr>
<tr>
<td>location</td>
</tr>
<tr>
<td>recording media</td>
</tr>
</tbody>
</table>

Figure 14.1 Variant usage for word-medial /p t k/ by sex and speaking style, Tyneside adults (N tokens: conversation = 1,764 for females, 1,628 for males; word-list = 571 for females, 572 for males).
the PVC sample, but the sex pattern was consistent (23% for older women compared with less than 1% for the older men).

Variant usage is of course influenced by a complex range of factors, as noted in passing above, and any generalization about a single factor inevitably represents an oversimplification. However, the patterns reported here for Tyneside are sufficiently clear for us to infer that the variants of voiceless stops are indexical of gender. Plain variants in intonational position and pre-aspirated variants in pre-pausal context are far more frequent in the speech of females than males.

The question at issue in the remainder of this study is whether members of the speech community under investigation can recognize such patterns. That is, do native users of the Tyneside dialect infer patterns of indexicality from sociolinguistic variables akin to those which have been identified in studies of speech production? In our specific case example, do Tynesiders recognize that males and females use variants of voiceless stops in statistically different ways? Do they have implicit or explicit knowledge of patterns of variation, such that they can associate a particular variant with aspects of a speaker’s social background?

4. Method

As noted earlier, the experiment was designed to probe the role of various phonetic cues in listeners’ identification of a talker’s sex. Assuming that F0 would not differ markedly for children, we constructed a simple listening test using samples of children’s speech as stimuli. The task for listeners was to indicate whether they judged the child to be a boy or a girl.

4.1 Speakers

In our corpus of children’s speech we identified six individuals who produced the full range of sociophonetic variants under investigation. That is, examples were found in each child’s recording of both plain and laryngealized variants in word-medial context, and both plain and pre-aspirated variants in pre-pausal contexts. Three boys and three girls were chosen to provide a balanced sample. The children were among the older ones in the corpus, with an age range from 3:0 to 4:1, although the age of the child was not used as a criterion for selection. Instead we targeted those children whose speech was relatively well developed and fluent, and whose recordings contained ample material suitable for the experiment.

4.2 Stimuli

From the six children’s recordings we extracted a total of 67 tokens for the listening test (Table 14.2). The extraction was performed using the editing tools in the Praat software program. The tokens extracted consisted mostly of single words, with four of the tokens being two word phrases. 27 tokens were single syllable words, 33 contained two syllables, five contained three, and two were four syllable items. Fifty-three of the tokens contained a voiceless stop in medial or final position, with the other 14 being fillers. We were not concerned with including the same number of tokens for each variant or context. The 53 tokens of interest were selected because they were the only ones available in the six recordings which (i) could be extracted without problem (e.g., they were spoken in isolation rather than in a continuous sentence, which might lead to clipping of part of the extracted token), and (ii) which were not affected by background noise or overlapping speech from someone else present during the recording. Of the total of 67 tokens, 32 (47.7%) were taken from boys and 35 (52.3%) from girls.

| Table 14.2 Stimuli Used in Listening Test |
|-----------------|--------|----------------|-----|-------|--------|
| stimuli | variants | n | variants | n | N | examples |
| medial | plain [p t k] | 20 | laryngealized | 12 | 32 | jumper, letters, chicken, the water |
| pre-pausal | plain [p t k] | 7 | pre-aspirated | 14 | 21 | up, cat, look, fell out |
| fillers | | | | 14 | 67 | bath, bumble bee, blue |

The extracted tokens were compiled into a new (wav) sound file for the purposes of the listening test. Each stimulus in the test consisted of three consecutive repetitions of a token. A gap of 1.5 seconds was inserted between each token repetition, and a longer gap of 5 seconds separated adjacent stimuli.

4.3 Listeners

Three listener groups were recruited for the experiment. The listeners were drawn from staff and students at the home universities of the authors. Some students who participated had some training in linguistics. However, none of the students was at an advanced level and none knew either the purpose
of the experiment or had awareness of the first two authors' previous work on Tyneside English. The first (experimental) group consisted of 20 natives of the Tyneside region. The other two groups were selected as controls for comparison with the Tynesiders. One consisted of 35 native British English speakers from regions other than Tyneside. They are referred to henceforth as the "non-local UK" listener group. Although we would predict some familiarity with varieties of British English, we assumed this group would have little awareness of the indexicality of sociolinguistic variables specific to Tyneside. The other control group consisted of 114 American students. These participants came from a range of geographical backgrounds but were all resident at the time of the experiment in Tucson, Arizona. We assumed that this group had little or no knowledge of phonological variation in British English. No formal testing was carried out of speech or hearing disorders, but none of the listeners reported any such problems.

4.4 Listening tests

The tests were conducted on campus at the participating universities. The British listeners participated in the tests in computer laboratories. The test sound file was played through standard audio programs, with listeners wearing good quality headphones. The American group heard the sound file via high quality amplification in a classroom setting. Although not wearing headphones, both laryngealization and pre-aspiration could be heard clearly by the administrator (the fourth author, who was positioned furthest away from the amplifier).

Listeners were given an answer sheet consisting of a transcription of the stimulus and two responses, "boy" and "girl" (Figure 14.2). The structure of the test was outlined verbally by the test administrators, who also explained that all the children came from Newcastle upon Tyne, UK. Listeners were instructed to judge whether the speaker of each stimulus was a boy or a girl, and to circle the appropriate answer. They were warned that they would find the test difficult, but further instructed to provide an answer for each stimulus even if they had to guess to do so.

1. cut	BOY	GIRL
2. letters	BOY	GIRL
3. bath	BOY	GIRL

Figure 14.2 Sample of answer sheet.

A training test was provided which consisted of three stimuli presented in the same format as the main test. After the completion of the training test listeners had the opportunity to ask questions about the test (and, in the case of the British groups, the audio programs). In practice the only questions raised concerned modification to the volume of sound playback. The main test was thus administered a few minutes after the training test. Despite reports that they found the task difficult, listeners performed as instructed, offering answers to each stimulus with only two exceptions.

4.5 Analysis

While our main point of interest was in the effect of the sociolinguistic variants on sex identification, we anticipated that the stimuli would also display variation along other parameters which might influence listener response. Following discussions with some of the participants after the test, and in light of predictions derived from previous linguistic research, we coded the stimuli for a number of factors. In addition to the sociolinguistic variant, each stimulus was also measured for F0 and amplitude. Quantification of F0 was performed for the obvious reason that F0 is a key cue to speaker sex for adults, and it was therefore possible that F0 differences might influence response for the child data. F0 was measured in Praat, recording the average F0 value across the whole stimulus. Amplitude was also measured in Praat and recorded as a mean for the stimulus, as a reflection of its overall loudness. Two further factors were coded for auditorily: articulation rate and voice quality. For speech rate the first three authors judged each token to be "normal," "slow," or "fast." For voice quality we recorded judgments of "modal," "breathy," and "creaky." In both cases the majority decision was taken as the final classification. We restricted ourselves to these simple taxonomies because the stimuli seemed to us to differ most clearly through phonation type, and because these labels approximated the kinds of comments listeners reported when discussing how they arrived at their responses. We subsequently made a more objective analysis of rate in terms of syllables per second. We made no attempt to analyze formant values or spacing, since previous studies which have identified formant differences in child speech have done so with fully controlled materials such as prolonged vowels spoken in isolation (Bennett and Weinberg 1979b, Perry et al. 2001).

Statistical analysis involved binary logistic regression in the first instance in order to explore the overall variance in the data. Regression analyses were carried out for each listener group, with separate runs for word-medial responses and pre-pausal responses. The dependent variable was response
(“boy” or “girl”), and the independent variables were amplitude, f0, rate, voice quality and variant (plain versus laryngealized for the run on medial responses, plain versus pre-aspirated for pre-pausal responses). Post hoc analysis was performed using chi square tests.

5. Results

Since the listening test yielded a binary outcome we report all results arbitrarily in terms of “girl” responses.

5.1 Overall responses

Although we were not concerned with how accurate listeners were in identifying the sex of the speaker, it is worth reporting that the proportion of correct responses was very similar for the three listener groups (Table 14.3). Moreover, the figures approached chance level at 50%, which was perhaps to be expected. The proportion of “girl” responses, however, was slightly higher than “boy” responses for all three groups (recall also that more of the tokens did in fact come from girls’ speech). Neither the correct responses nor the “girl” responses differed significantly across the two British listener groups. However, the American group gave significantly fewer correct responses than the non-local UK group (chi sq = 5.992, df = 1, p < .025).

Table 14.3 Overall Distribution of Results

<table>
<thead>
<tr>
<th>listener group</th>
<th>correct responses (%)</th>
<th>“girl” responses (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tynesiders</td>
<td>48.7</td>
<td>52.0</td>
<td>1,340</td>
</tr>
<tr>
<td>non-local UK</td>
<td>49.4</td>
<td>53.3</td>
<td>2,343</td>
</tr>
<tr>
<td>Americans</td>
<td>46.5</td>
<td>51.4</td>
<td>7,648</td>
</tr>
</tbody>
</table>

5.2 Logistic regression analysis

The results of the exploratory logistic regression analyses are summarized in Table 14.4. Unsurprisingly the results were complex, as is to be expected when we consider the number of factors included in the analysis, and the fact that the stimuli were both small in number and relatively uncontrolled. All factors were returned as significant in one or more of the runs for at least one of the listener groups.

Table 14.4 Factors Returned as Significant in Logistic Regression Analysis

<table>
<thead>
<tr>
<th>word-medial stimuli</th>
<th>group</th>
<th>amplitude</th>
<th>f0</th>
<th>voice quality</th>
<th>rate</th>
<th>variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tynesiders</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-local UK</td>
<td>***</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Americans</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>(*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre-pausal stimuli</td>
<td>group</td>
<td>amplitude</td>
<td>f0</td>
<td>voice quality</td>
<td>rate</td>
<td>variant</td>
</tr>
<tr>
<td>Tynesiders</td>
<td>(*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-local UK</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Americans</td>
<td>(*)</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td></td>
<td>***</td>
</tr>
</tbody>
</table>

(*) p < .1, * p < .05, ** p < .01, *** p < .001

We refrain from reading too much into the regression results, since further tests would need to be carried out using more controlled data to clarify the patterns observed. What is clear, however, is that the sociolinguistic variants do play a role in listener response, albeit a relatively small one compared with other factors, and much more clearly for pre-pausal responses than for medial ones. In light of the overall complexity in the data we continue with an exploration of responses in relation to each of the main factors.

5.3 Results by amplitude

The regression analyses showed amplitude to be a significant factor in the responses by non-local UK listeners for both medial and pre-pausal stimuli, and by Americans for medial stimuli (Table 14.4). Figure 14.3 enables us to take a closer look at the patterns in the responses. It shows responses in the form of scatter plots, for the three listener groups separately. Results for medial and pre-pausal stimuli are pooled. The vertical axis represents the proportion of “girl” responses given by listeners, while the horizontal axis indicates the mean amplitude of the stimulus (in dB). Each data point indicates responses to an individual stimulus. Trend lines are also included for each listener group.

Figure 14.3 indicates a consistent and clear pattern for all three groups. While relatively louder tokens are readily perceived as being either “boy” or “girl,” relatively quieter tokens (those with lower amplitude values) elicited more “girl” responses. The effect is clearest for the quietest tokens, i.e., those to
the left hand side of the scatter plots. Results of correlation analyses are summarized in Table 14.5. The negative correlations are significant for all listener groups when all tokens are considered together. When medial tokens are examined alone the correlations are again significant for all three listener groups. For pre-pausal tokens taken alone the correlation is significant only for the non-local UK group, but the negative trend is maintained for the other groups.

Table 14.5 Correlation Analysis Results, Responses by Amplitude

<table>
<thead>
<tr>
<th></th>
<th>Tynesiders</th>
<th>non-local UK</th>
<th>Americans</th>
</tr>
</thead>
<tbody>
<tr>
<td>all stimuli</td>
<td>r</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>(df=65)</td>
<td>−.300</td>
<td><.01</td>
<td><.0005</td>
</tr>
<tr>
<td>medial only</td>
<td>r</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>(df=30)</td>
<td>−.362</td>
<td><.025</td>
<td><.01</td>
</tr>
<tr>
<td>pre-pausal only</td>
<td>r</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>(df=19)</td>
<td>−.273</td>
<td><.025</td>
<td><.025</td>
</tr>
</tbody>
</table>

5.4 Results by f0

f0 was returned as a significant factor in five of the six regression analyses (Table 14.4). Closer analysis of the results, however, fails to reveal a clear pattern. Figure 14.4 shows responses in the form of scatter plots, following the same format as Figure 14.3.

For adults high f0 is usually associated with female speakers and low f0 with males. In light of this we might predict that stimuli with high f0 would be more likely to elicit “girl” responses from listeners in our test. This was not the case in our test. The trend lines in fact indicate an effect in the opposite direction, with low f0 stimuli eliciting more “girl” responses from all listener groups. However, none of the correlations were close to significance. The plots in Figure 14.4 present all stimuli together, with no division according to the phonological context of the voiceless stop. Further exploration of the f0 data with reference to phonological context fails to clarify the picture. When stimuli with a word-medial or pre-pausal /ptk/ are analyzed separately the correlations remain nonsignificant.

It is clear that to understand the relationship between f0 and listener response requires further research. We might offer a partial explanation for our findings, however, with reference to the relationship between f0 and amplitude. As Figure 14.3 showed, quiet stimuli elicited more “girl” responses while more “boy” responses were given for louder tokens. As is well known, louder speech typically leads to an increase in f0, as the increased airflow required to raise amplitude will also (unless the speaker makes compensatory adjustments) lead to faster rate of vocal fold vibration. Quiet speech may by contrast involve relatively low f0. What we see in Figure 14.4, then, might in fact be an indirect reflection of the loudness of the stimuli. We therefore tested whether there was any correlation between the f0 and amplitude measures in our data. When all stimuli were considered there was indeed a positive—but non-significant—correlation. That is, louder stimuli had higher f0, and quieter stimuli lower f0, but the effect was not marked. We also considered
the fact that listeners might only show a clear pattern of responses for stimuli with extremely high or low f0 values. When we examined the f0 and amplitude measures in more detail we found a much stronger positive correlation when only those stimuli with extremely low f0 values were considered. We arbitrarily tested for f0 and amplitude correlations with the 10, 12, 15, and 20 stimuli which had lowest f0. The correlation coefficient reached significance for the 12, 15, and 20 stimuli with lowest f0. No significant correlations were found in a similar set of comparisons with the highest f0 stimuli. Thus, in summary, stimuli with very low f0 may be eliciting high numbers of “girl” responses because they are also quiet. This remains, however, an issue which demands further exploration in future experiments.

5.5 Results by voice quality

Voice quality was not generally identified as a significant factor in the regression analyses, the only exception being for American listeners with pre-pausal stimuli (Table 14.4). Nevertheless we present the main effects here for completeness, and because a predictable trend did emerge in the responses. Figure 14.5 represents the proportion of “girl” responses for the three groups, with tokens divided according to whether they were coded as modal, creaky, or breathy. The number of stimuli in the creaky and breathy categories is small (6 creaky and 4 breathy from the total of 67), but it is noteworthy that the breathy tokens elicited the highest proportion of “girl” responses from all groups.

![Figure 14.5](image)

Figure 14.5 Percentage of “girl” responses by voice quality.

5.6 Results by articulation rate

The data are arranged in Figure 14.6 according to our auditory categorization by articulation rate. As was the case with voice quality, the number of stimuli in the non-modal categories is fairly small (n=13 in each case). The emergent trend in this particular analysis was variable across the listener groups. Both British groups gave fewer “girl” responses to fast stimuli than they did slow stimuli. For the Americans the reverse pattern was found.

Following the regression analysis we took an objective measure of articulation rate, in terms of syllables per second for each token (Künzel 1997). The results of this more detailed analysis failed to clarify the picture, however, with no significant correlation emerging between articulation rate and responses.

5.7 Results for word-medial variants

No variant was returned as a significant factor in the regression analysis for stimuli with medial /p t k/. However, when we compare the listener groups we do find evidence for a significant difference in responses.

Figure 14.7 shows the proportion of “girl” responses for medial tokens containing plain and laryngealized variants separately. For both the non-local UK
and American listeners the proportion of "girl" responses is approximately equal when they hear stimuli with plain or laryngealized tokens. For the Tynesiders, however, there is a clear difference according to variant. With plain tokens the proportion of "girl" responses (58%) is similar to that from the non-locals and Americans, and with no significant difference according to listener group. But with laryngealized tokens the Tyneside listeners gave significantly fewer "girl" responses (39%) than they did for plain tokens (chi sq = 21.289, df = 1, p < .001). The Tynesiders furthermore gave significantly fewer "girl" responses to the laryngealized tokens than either of the control groups (Tynesiders versus non-local UK: chi sq = 15.803, df = 1, p < .001; Tynesiders versus Americans: chi sq = 22.608, df = 1, p < .001; no difference between the two control groups).

5.8 Results for pre-pausal variants

Finally, Figure 14.8 illustrates responses to stimuli with pre-pausal /p t k/. The variant was shown to be significant for all three listener groups in the regression analyses. The data in Figure 14.8 enable us to explore these patterns more fully.

First, we can see that all listener groups gave fewer "girl" responses to stimuli with pre-aspirated [p t k] than they did with plain variants. This effect was significant for both the non-local UK group (chi sq = 6.325, df = 1, p < .025) and also the Americans (chi sq = 3.86, df = 1, p < .05). Note that this finding might appear to go against our predictions based on patterns observed in speech production. However, the Tyneside listeners were the only group which did not give a significantly lower number of "girl" responses to pre-aspirated tokens compared with plain tokens. Furthermore, for the pre-aspirated stimuli the local listeners gave significantly more "girl" responses than both the control groups (compared with non-local UK listeners: chi sq = 4.978, df = 1, p < .05; compared with Americans: chi sq = 4.621, df = 1, p < .05). There was no difference between the two non-local groups.

6. Discussion

As explained in the introduction, this experiment had two main aims: to explore the range of cues used by listeners in judging a speaker's sex or gender, and
to assess whether listeners show awareness of statistical associations between a speaker’s social background and fine-grained sociolinguistic variants. We turn now to a discussion of the findings with respect to these aims.

6.1 Cues in identifying the sex of a speaker

In Section 2 we noted that previous studies have yielded somewhat inconsistent conclusions with respect to the question of which cues are used by listeners in judging the sex of child talkers. In general, f0 has been dismissed as a relevant cue since children do not display the systematic sex-correlated differences in f0 observable for adults. Several other cues have been mentioned in previous studies, but with little formal study of their value in identification tasks.

In our study the effect of f0 was just as unclear as in previous studies (Weinberg and Bennett 1971, Bennett and Weinberg 1979b, Perry et al. 2001). Although it was returned as a significant factor in the exploratory regression analyses, detailed examination of the results for each listener group showed no significant correlations between f0 and particular responses (Section 5.4). There was a weak negative correlation between f0 and proportion of “girl” responses, such that stimuli with low f0 tended to elicit more “girl” identifications. However, this may be an artefact of the overall correlation between f0 and amplitude: louder tokens tend also to have higher f0, quieter tokens have lower f0. As we saw in Section 5.3, there was a consistent and clear effect in the data when we analyze the results with respect to amplitude. Quieter tokens are readily attributed to girls by all three listener groups. A further issue to consider in assessing the role of f0 is that we used short samples. It may be that considerably longer samples are required in order to gain a meaningful measure of f0 (Nolan 1983, for example, argues that samples should be at least 30 seconds in duration).

The contribution of amplitude has not, to our knowledge, been formally tested before, but it has certainly been identified as a potential cue, for example by Günzburger et al. (1987). Although all three listener groups responded to amplitude differences in a similar way, we refrain from suggesting that this might be a universal cue for judging a talker’s sex. The association of quiet speech with female talkers almost certainly reflects a social convention for the listener groups concerned, which may also vary markedly according to the type of talk involved.

Voice quality has also been mentioned as a cue to speaker sex by other researchers (e.g., Sachs et al. 1973). The results of our experiment offer support to this hypothesis, with all listener groups giving more “girl” responses to breathy stimuli (Section 5.5). This pattern coincides with the findings of speech production studies, where breathy phonation has often been identified as a characteristic of female talkers (e.g., Henton and Bladon 1985). As with the results for amplitude we resist the temptation to highlight voice quality as a potentially universal cue to sex, however. First, our analysis focused solely on broadly defined aspects of phonation quality. Voice quality is far more complex than phonation alone (Laver 1980). Other aspects of vocal setting, such as marked differences in supralaryngeal settings, may also affect sex identification or override the perceptual effects of phonatory differences. Secondly, the perceptual association of voice qualities with particular categories of speaker is certainly another socially-constructed convention, and one which may differ markedly across speech communities, languages, and types of speech. Biemans (2000) found no clear gendered pattern for breathiness with Dutch speakers, and concludes that this is not as “salient” a feature in Dutch as it is in English (165). Another example is provided by Wolof, where breathiness appears not to be a marker of gender but of high status “noble” speech, along with low overall f0, slow tempo, low volume and a narrow f0 range (Irvine 1998).

Articulation rate was included as a factor in the analysis despite conflicting results from previous studies of adult speech production and inconclusive outcomes in perceptual tests. Our results with respect to rate proved both interesting and variable. The British listeners rated faster stimuli as more likely to be spoken by boys, whereas slow stimuli were attributed to girls. For the Americans the opposite pattern emerged. The British listeners’ responses are predictable in light of studies such as those by Byrd (1994) and Yuan et al. (2006), which found men to speak significantly faster than women. Note that both studies documented the significance of speech rate for American English speakers who were generally of a middle-class background. While British listeners’ responses followed expectations based on these studies, American listeners’ responses did not. However, regional patterns for speech rate may be more significant than projections based on Byrd or Yuan et al would reveal. Specifically, in this case, sociolinguists in the south-west United States have noted a “John Wayne” effect whereby men appear to use a low narrow f0 range, to speak more slowly, and to talk less than women (Lauren Hall-Lew, personal communication). Analysis of these factors in a corpus of Arizona speech has not yet been completed, but given that the US listener sample was dominated by Arizona natives it makes it likely that regional gendered speech patterns are relevant to the results obtained here. Clearly more investigation is required to explore these effects further, but it seems to us once again that any associations between rate and gender are likely to vary across social groups. It
is also prudent to conclude from this aspect of the analysis that a single word or short phrase may not be sufficient for listeners to draw any firm conclusions about the sex of the speaker.

A final observation can be made with respect to the overall success rate of listeners in the identification task. Correct responses for all groups were close to chance, at just over 50% (Table 14.3). This is markedly lower than in other similar experiments (for example, Weinberg and Bennett 1971: 74%; Sachs et al. 1973: 81%; Meditch 1975: 79%; Bennett and Weinberg 1979a: 68%; Edwards 1979: 84%; Günzburger et al. 1987: 74%). One likely reason for our lower scores is the relatively short duration of the samples we used. The better scores reported in other studies have mostly been derived when longer stimuli have been used. For example, Weinberg and Bennett (1971) used 30 seconds of spontaneous speech, Meditch (1975) used 2 minutes, Edwards (1979) a 99 word passage, and the 74% score for Günzburger et al. (1987) was achieved with sentence stimuli. However, other studies have still achieved higher identification rates with samples at least as short as ours. The listeners in Bennett and Weinberg (1979b) gave 65% correct responses on isolated vowels and 66% on whispered vowels. The correct responses in Günzburger et al. (1987) dropped to 55% overall with isolated vowels, but for boys this was still significantly above chance at 57%. A further factor in our relatively low score may therefore be our use of uncontrolled, spontaneous materials rather than comparable materials for all speakers such as sustained vowels. The more natural material contains a range of variable phonetic features, and it is possible that cues relevant to gender identification might vary in salience across the stimuli. It is also possible that different cues to gender may conflict with one another in listeners’ perceptions, and thus make the judgement task more difficult.

6.2 Listener awareness of sociolinguistic variants

Our second principal interest was whether judgements of speaker sex were influenced by fine-grained phonetic variants.

With respect to word-medial (p, t, k) our results indicate that the presence of a particular variant did make a difference to listener response, but only for the Tyneside group. This finding follows from the prediction we made in respect of gendered patterns in speech production. In Tyneside English plain stops are strongly associated with female speech. Local listeners’ responses appear to display tacit awareness of this gendered pattern, with plain tokens eliciting significantly more “girl” identifications than laryngealized tokens did. Neither control group showed any difference in response patterns to the

two variants. This was also predicted, since we assume that listeners who are not intimately familiar with the Tyneside dialect will not be aware of any sociolinguistic patterning in respect of variables such as voiceless stops.

The results for pre-pausal (p, t, k) were less clear than those for medial stops. However, they can still be interpreted as supportive of our initial hypothesis. Although all groups gave fewer “girl” responses to pre-aspirated tokens, contrary to our expectations, it is important to remember that the natural stimuli used in the test contain many other potential cues to gender. As suggested earlier, these other cues might override any perceptual contribution from a subtle phonetic feature such as pre-aspiration. More importantly, the Tynesiders gave significantly more “girl” responses to the pre-aspirated tokens than did either the non-local UK group or the American group. The results therefore again suggest that local listeners might indeed derive information about the sex of the speaker from the pre-pausal variants. Specifically, it is possible that they interpreted pre-aspiration as an indicator of female speech more frequently than the other listener groups did.

7. Concluding comments

The findings of our exploratory study support and extend previous research on understanding how listeners make judgments about a speaker’s sex. Although the task of identifying a child’s sex from a short sample was difficult, listeners’ perceptions were affected by a number of factors. Clear and consistent effects were exerted by amplitude and phonation quality, with quieter stimuli and breathy phonation leading to an increased percept that the talker was female. Articulation rate also affected responses, but with variable effects across listener groups. The role of f0 was less clear, and our results therefore conform with those recorded in previous experiments. It further appears, however, that listeners’ judgments are also affected by their own sociolinguistic background. With respect to gendered sociolinguistic variants, listeners who were familiar with the dialect of the talkers registered different results from those who were not. We have evidence, then, that listeners do indeed show tacit awareness of statistical associations between categories of speaker and linguistic variants.

Naturally, these findings all deserve more thorough investigation. A profitable line for future research will be to use controlled materials to examine the effects of each cue in isolation, or in specific combinations. Use of synthetic or resynthesized speech will permit manipulation of specific parameters in the stimuli chosen for listening tests. It may also be of value to test the perceptual effects of stimuli which are longer, or of a different structure.
Given the role played by sociolinguistic variants in the identification task, and the socially variable nature of other cues such as voice quality, it is furthermore of interest to ask whether any cues might exert a universal effect on listeners. It seems possible, perhaps even likely, that all perceptual cues have a variable effect, determined according to social context. The relative strength of a cue may differ according to the linguistic, social and regional backgrounds of both the speaker and the listener, and the communicative purpose of the spoken material. We are only just beginning to understand the variable nature of acoustic cues on speech perception in general. It appears that the intersection of sociolinguistics and speech perception is fertile territory for further investigation.

Acknowledgments

Versions of this material were presented at NWA3 (University of Michigan, 2004), the BAAP Colloquium (University of Cambridge, 2004), and seminars at the University of Pennsylvania and North Carolina State University. We are grateful to colleagues at those meetings for their comments. We also record our thanks to Bill Haddock for comments on a draft of this chapter and to David Howard for advice on statistical analysis.

References

Chapter 15

Avant-garde Dutch: A Perceptual, Acoustic, and Evaluational Study

Renée van Bezooijen, Radboud University and Vincent J. van Heuven, Leiden University

1. Introduction

In the present study we will target a vowel shift in present-day Dutch. It is the most conspicuous feature of a new variety of Dutch "discovered" and described by Stroop (1998), who christened it Polder Dutch. Here we will refer to the new variety by the more interpretable name of Avant-garde Dutch (for details on the background of the variety we refer to Van Heuven, Van Bezooijen, and Edelman 2005). The clearest phenomenon in avant-garde Dutch is a change affecting the closing low-mid diphthong /ei/, which is said to undergo a process of lowering. According to Stroop, the lowering would be especially noticeable in the speech of relatively young, highly educated and politically progressive women.

We aim to present an integrated study of various properties of the ongoing change. We will do this by presenting three separate studies. The first study uses a perceptual approach to test the claim that avant-garde women are more prone to adopt the new variety than male speakers. The second study tries to determine the acoustic basis of the difference in realization of /ei/ by female and male speakers. The third evaluational study aims to determine the gender-related attractiveness and other subjective features of Avant-garde Dutch. Below, the aims of the three studies will be presented in more detail.

1.1 The phonetics of Avant-garde Dutch

Avant-garde Dutch differs from the standard language only in its phonetics, so it is an accent rather than a dialect. Stroop presents the change as a chain shift, whereby the low-mid diphthongs /ei, ey, o/ are lowered. As a result, the onset of the low-mid diphthongs assumes a position very close to open /a:/,